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A LARGE NUMBER of modifications of the perfect 
gas law have been put forward to describe the behavior of 
nonideal gases. These equations of state are largely empiri- 
cal, and involve constants which must be determined 
experimentally. 

Kamerlingh-Onnes (5)  was the first to suggest that for 
any gas, the expression of the compressibility factor, 2, in 
terms of an infinite series in 1/ V is a valid representation 
for the isothermal P- V-T characteristics. Thus, 

Z =  PV/RT= 1 +  B'lV+C'/V+D'iVS+ . . .  
Z =  PV/RT= 1 +  BP+ C P + D p +  ... 

(1) 

(2 ) 
or 

where 
P = pressure 
V = molal volume 
T = absolute temperature 
R = gasconstant 

and B = B ' / R T  C =  (C' - B'*)/(RT)'; etc. 

The coefficients B', C', and D' are termed the second, 
third, and fourth virial coefficients, which for any particular 
gas are functions of the temperature only. Furthermore, 
B', C', and D' give a measure of the deviations from 
ideality due to binary, ternary, and quaternary molecular 
interactions. 

The vinal coefficients of a gas can be predicted from 
theoretical considerations, provided the potential energy of 
attraction of the molecules is known in terms of the funda- 
mental molecular characteristics. 

At present, the agreement between theory and experiment 
is satisfactory for the second virial coefficient for only a few 
gases, because the functions which express the potential 
energy of a system in terms of the physical variables are 
not accurately known except for simple atoms and 
molecules. 
EXPERIMENTAL EVALUATION OF 
SECOND VlRlAL COEFFICIENTS 

The most common method of determining the second 
virial coefficients from experimental compressibility data 
is a graphical one. In this method, the vinal equation is 
rearranged to give a function which, when plotted us. 1/ V 
or P gives as its intercept -B' or -B. The required 
rearrangements are: 

(1 - Z ) V =  -B'-C'/V-.  . . (1 - Z ) / P =  -B - CP- . . . 
Lim (1 - Z ) V =  -B' Lim (1 - Z ) / P =  -B 
l i V  - 0 P - 0  

In the limits described above, Z approaches unity as P 
approaches zero, and consequently, small errors in Z become 
large errors in 1 - 2. It therefore follows that the graphical 
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methods require extremely accurate compressibility data 
a t  very low pressures. For P-V-T data taken a t  relatively 
high pressures, the locatioh of the intercepts in a plot of 
(1 - 2 )  V us. 1/ V or (1 - Z ) / P  us. P involves considerable 
subjectivity . 

I t  is also possible to determine the second vinal coeffi- 
cients analytically. On fitting Equation 2 to the experi- 
mental P-V-T measurements by means of a least squares 
procedure, unique values of the coefficients B ,  C, . . . are 
obtained. Furthermore, if the errors in the experimental 
measurements are normally distributed, the values obtained 
for B,  C, . . . will also be the most probable estimates of 
these coefficients. 

In  the face of the practical impossibility of calculating an 
infinite series, some workers (8) have adopted as an approxi- 
mation a finite series of the form 

Z = 1 + AIP+ A2PZ+ ASP' (3) 
where j is usually assigned a value of 4. It is assumed in 
this equation that deviations from ideality due to molecular 
interactions higher than ternary will be included in the 
single term A3PJ. 

A similar approach ( 4 )  is to adopt a finite polynomial 

8 - h  

Z = A,P' 
I = o  

(4) 

where the value of k is assigned arbitrarily. 
In each of these methods, AIRT is taken to be the 

second virial coefficient. 
In this article, a method is outlined for determining the 

number of terms of a finite polynomial appropriate to each 
particular set of isothermal compressibility data. 

For a compressibility-pressure isotherm, the coefficients 
A ,  in Equation 4 can be evaluated uniquely by a least 
squares procedure. As the value of k increases, a closer 
reproduction of the experimental data points is achieved, 
so that for n data points, a polynomial order n - 1 will 
reproduce the experimental data points identically. How- 
ever, if the polynomial is to be acceptable for purposes of 
interpolation and estimation of virial coefficients, it must 
satisfy the restrictions imposed by the shape of the isotherm 
as indicated by the trend of the experimental data. 
RESTRICTIONS ON ANALYTICAL SOLUTION 

The restrictions which are to be satisfied by the least 
squares solutions of Equation 4 will be examined in relation 
to the compressibility data of 2-methylbutane (9). 

The data were obtained on a Burnett apparatus which 
did not permit measurements to be made within the pressure 
range of 0 to 1 atm. In calculating the coefficients A , ,  all 
the data points which conform with the trend of the 
isotherms a t  low pressures were employed. These include 
the compressibilities a t  pressures up to saturation for 
isotherms below the critical temperature, and compressi- 
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bilities a t  pressures below the critical region for isotherms 
above the critical temperature. Table I gives the tempera- 
tures a t  which isotherms were determined, the pressure 
range for each isotherm, the saturation pressure, and the 
number of experimental points available for each isotherm. 

For each isotherm, the coefficients A ,  in Equation 4 were 
calculated by a least squares routine for k = 1, 2, 3, . . . , 
n - 1. The plots of 2 us. P for 2-methylbutane (9) indicate 
clearly that the slope and the curvature of each isotherm 
are negative over the entire range of pressures examined. 
As a result, any polynomial in which both the coefficients 
A 1  and A2 are not negative is not acceptable, because these 

Table I. Temperature and Pressure Ranges of 
Compressibility Isotherms 

Temp., Pressure Saturation No. of 
c. Rgnge, Atm. Pressure, Atm. Pointsa 

50 0- 2.0 2.025 8 
75 0- 3.9 3.983 14 
100 0- 7.0 7.106 21 
125 0-11.6 11.787 25 
150 0-18.1 18.449 29 

21 
30 

175 0-27.4 27.856 34 
b 

188.5 0-31.7 
200 0-37.7 

;Includes P = O.oooO,Z = 1.oooO. 
Critical temperature of 2-methylbutane is 187.8" C. 

coefficients are related to the slope and the curvature of 
the isotherms as P approaches zero as follows: 

A , =  (az/ap)p,o 2~~ = (a'z/a P2)p - 
For the polynomials in which both A1 and A2 are negative, 
if their curvature is negative over the entire range of 
pressures, then their slopes are also negative over the same 
range. This follows from the fact that a polynomial is a 
single valued, continuous function. 

SECOND VlRlAL COEFFICIENTS OF 2-METHYLBUTANE 
The order of the acceptable polynomials of 2 in terms of 

P-i.e., those which describe the isotherm correctly as to 
slope and curvature-and their coefficients A ,  are given in 
Table 11. The negativity of the curvature of each polyno- 
mial was ascertained by examining its second derivative 
at  regular intervals of 0.05 atm. from P = 0 up to the 
maximum pressure. 

For each isotherm, the value of the coefficient A1 which 
occurs in the highest order acceptable polynomial was 
chosen to estimate the value of B', (B' = AIRT) ,  the 
second vinal coe5cient. The values of A I R T  are given in 
Table 111. 

In Table IV,  a comparison is given between the percent- 
age residuals, (Zobd, - Zdcd,) lOO/Z,~.,  and the estimated 
maximum experimental errors (9) in determining the values 

Temp., C , 
50 
75 

100 

125 

150 

175 

188.5 

200 

75 
125 

175 

188.5 
200 

k 
1 
1 
2 
4 
5 
1 
2 
3 
1 
2 
4 
6 
8 
1 
2 
4 
1 
2 
4 
6 
8 
1 
2 
4 
6 
1 
2 
4 
6 
8 
9 

5 
6 
8 
6 
8 
6 
6 
8 
9 

Table II 

A0 

0.99960816 
1.0028402 
0.99952888 
1.0000048 
1.0000053 
1.0047020 
0.99881099 
0.99988468 
1.0072075 
0.99771404 
0.99991109 
0.99997981 
1.0000090 
1.0115168 
0.99598463 
0.99933014 
1.0231045 
0.98970414 
0.99736594 
0.99949764 
0.99986789 
1.0296749 
0.98926459 
0.99808439 
0.99987374 
1.0298854 
0.98801397 
0.99716683 
0.99966208 
0.99999735 
0.99998596 

A ~ X  10' 
-32.081006 
48.946756 
197.36119 
2.62241 39 
17.580103 
0.84133494 
0.50098160 
1.6646745 
3.2172451 

I - k  

Coefficients A, of All Acceptable Polynomials Z = A,P' 
1-0 

A l x  lo2 A ' X  10' A ~ X  io5 
-3.6584917 
-2.9576883 
-2.5324205 - 10.284228 
- 2.5832263 -17.162174 63.049460 
-2.5936475 -15.253042 50.754788 
-2.4345525 
- 1.9525196 
- 2.1187441 
- 2 . 0 5 5 ~ 9 4  

-6.7251232 
-0.81268160 -5.5814615 

- . - - - - - - - 
-1.5245690 -4.6710511 
-1.7231826 -1.1662607 -0.53093630 - 1.6854939 -7.2994107 28.261556 
-1.7178162 -4.4384247 25.456424 
-1.7781456 
-1.1523503 
-1.3474609 

-3.6683986 
-2.1188107 0.89982920 

-1.6579654 
-0.73059102 -3.4903931 
-0.93372900 -5.4546598 3.4277563 
- 1,1004047 - 3.7364872 6.5442843 
- 1.1602931 -2.2314362 8.9339980 
-1.5133786 
-0.67228118 - 2.6236214 
-0.87629795 -3.8069234 2.0012275 - 1.0405172 - 1.5722063 2.4066044 
-1 41WM - . - -- - _-- 
- 0.56945833 -2.3164221 
- 0.75532377 - 3.6593548 1.6565327 
-0.91793592 - 1.9165886 2.2316467 
-0.96914958 -0,34964810 0.9731 2090 
-0.96204394 - 0.86846651 2.4121913 

A s x  10' A , X  io9 A 8 x  10" 

-15.472657 
-236.05385 149.84088 -386.36487 
-0.40708731 
-9.1037407 2.4096214 -2.5767082 
- 0.11748380 
-0.058531700 - 0.66552083 0.13397502 -0.10940662 
- 1.3746704 0.32260754 -0.37977136 

A ~ x  lo6 

- 113.65423 
-80.423967 

-1.1250019 
-57.612598 
- 96.395228 

-0.72638324 

-0.93467584 
-6.3572541 
-18.140016 

-0.47588374 
-2.2654993 

- 0.32596987 
-1.6306168 
-2.1265863 
-4.1217699 

A ~ X  101' 

1.6133517 
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Table Ill. 

Temp., 

Second Virial Coefficients of 2-Methylbutane 
-AIM', Liter/Gram Mole 

c. Unweighted Weighted 
polynomials polynomials 

50 0.9701 1126 0.97651470 
75 0.74095477 

100 0.64874715 0.65079210 
125 0.56122395 ~~~ 

150 
175 
188.5 
200 

0.46786726 
0.42668038 
0.39416076 
0.37351221 

"Weighting not necessary. 

0.48310445 
0.41927100 
0.39625464 

Table IV. Comparison of Residuals and Experimental Errors 

Residuals, % 
Unweighted Weighted 
Polynomials Polynomials Temp., 

O c. Av. Max. Av. Max. 
50 0.04 0.08 0.04 0.10 
75 0.05 0.13 

100 0.03 0.09 0.03 0.09 ~ ~~ --. 

125 0.03 0.06 
150 0.05 0.12 0.05 0.13 

175 0.02 0.08 0.04 0.27 

Estd. 
M S .  

Exptl. 
Error, % 

0.15 
0.15 
0.25 
0.25 
0.30 
0.30. 

0.02 0.08 0.02 0.08 0.30' 188.5 

0.01 0.04 O.3Ob 
200 0.04 ( 0.10 0.65' 

I 0.09 0.22 ( 0.09 0.22 ( 3.0 

b 'At saturation. Below 27 atm. '27-37 atm. 

ofZObsd. All the residuals are well within the limits of 
experimental error. 

POLYNOMIALS CALCULATED FROM WEIGHTED DATA 

In calculating the least squares fits for each isotherm, 
a value of 2 = 1.0000 a t  P = 0.0000 was added to the 
experimental results, and was given a weight equal to the 
weight of each experimental data point. In the polynomials 
adopted to represent the compressibility, 2, over the pres- 
sure ranges examined, the values of the first terms (Ao) 
represent the estimates of the first virial coefficients. The 
fact that for some isotherms these values are not equal to 
1.0000 will now be considered. 

Deviation of A. from 1.0000 arises from either random 

or systematic errors in the data. I t  is possible to force 
the polynomial to go through 1.0000 a t  zero pressure by 
weighting the point (0.0000, 1.0000) more than the experi- 
mental points, but it must be kept in mind that the second 
vinal coefficient is represented by the slope of the poly- 
nomial a t  zero pressure. If the errors are random, then the 
data points fall on either side of the true isotherm, and 
forcing A0 to be 1.0000 will result in a slope which is valid 
for estimating the second vinal coefficient. However, if the 
errors are systematic, the data points fall mostly on one 
side of the isotherm, and forcing the polynomial to go 
through 1.0000 a t  zero pressure will give an incorrect slope. 
In fact, if the compressibility data are known to contain 
systematic errors, the slope of a polynomial calculated with- 
out the addition of the point (0.0000, 1.0000) would give 
the better estimate of the second virial coefficient. 

Inasmuch as no systematic errors were known to exist 
in the data, each highest order acceptable polynomial was 
forced through 1.0000 a t  zero pressure. For the highest 
order polynomials a t  each temperature in which A .  was not 
equal to 1 .OOOO, increasing weighting factors were applied 
to the point 2 = 1.0000 a t  P = 0,0000 and the least 
squares fits were recalculated. The resulting polynomials 
were then tested as to slope and curvature. In order not 
to reduce the influence of the experimental data points 
unduly, the smallest weighting factor which made A .  = 
1.0000 in the highest order acceptable polynomial was 
employed. 

The coefficients of all the acceptable weighted polyno- 
mials are given in Table V, along with the order of the 
polynomials and the weighting factor employed in each 
case. In these polynomials, the coefficients Ao are equal to 
1.0000, and the coefficients A ,  are those employed in 
estimating the second virial coetficients. Values of A I R T ,  
the second virial coefficients estimated from the weighted 
polynomials, are given in Table 111. 

Table IV gives the residuals of the weighted polyno- 
mials and the estimated maximum experimental errors. 
Again, the residuals are all within the limits of the experi- 
mental error. 

SMOOTHED VALUES OF 
SECOND VlRlAL COEFFICIENT 

The estimates of the second virial coefficients obtained 
from both the weighted and weighted polynomials of 
2 us. P (Table 111) were plotted against temperature. 
(Figure 1). The values reported by Scott and others (7) were 
also included to extend the temperature to 0" C. 

A smooth curve of positive slope and negative curvature 
describes the results satifactorily over the 0" to 200" C. 

8 - k  

Table V. Coefficients A, of All Acceptable Weighted Polynomials Z = A,P1 
2 = O  

Temp., Weighting 
c. Factor k A0 A ~ x  10' A ~ X  10' A ~ X  io5 A ~ X  lo6 A 5 x  lo7 AsX lo8 

50 3.30 1 0.99995176 -3.6826404 
100 1.66 1 1.0036497 -2.4100569 

2 0.99932702 - 1.9833749 -6.3576637 
3 0.99995098 -2.1254227 -0.62834810 -5.7301874 

150 5.00 1 1.0036158 -1.7041281 
2 0.99931067 -1.2397828 -3.2385870 
4 0.99995720 -1.3913444 -1.2393085 0.23955280 -0.56099880 

175 3.95 1 1.0111186 -1.5893103 
2 0.99679988 -0.85158319 -3.1093830 
4 0.99965329 -1.0450068 -3.9574719 2.6828610 -0.81171518 
6 0.99995934 -1.1401444 -2.6318618 5.1786318 -5.5256232 2.3781652 -0.37945895 

188.5 1.75 1 1.0219725 -1.4792729 
2 0.99367784 -0.72782355 -2.4809787 
4 0.99924043 -0.92019810 -3.3288370 1 BO41599 - 0.44852591 
6 0.99995721 -1.0460447 -1.4515823 2.2867144 - 2.2057859 0.82681610 -0.1161 1221 

~ ~~ 
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Figure 1. Second virial coefficient of 2-methylbutane 

I - I  

range. The expression B' = bit', 12 = 1,2, . . . , n - 1, where 

n is the number of data points a t  different values of t ,  was 
fitted to each set of data. The highest order polynomial 
which described the results correctly as to slope and curva- 
ture was found in each case to be ternary. The third-order 
polynomials representing the smoothed estimates of the 
second vinal coefficients are: 

'-0 

B' = -1.3900977 + 1.0733631 x 10-*t - 3.8092474 x 10-5f 

+ 4.8604950 x ( 5 )  

+ 5.2181227 X 10-'t3 (6) 
where 0" C. 5 t 5 200" C. 
Equation 5 represents the smoothed estimates obtained 
from the unweighted polynomials, and Equation 6 those 
from the weighted polynomials of Z us. P. 

The average and maximum residuals (AIRT -bo - blt - 
bzt2 - b3t3) are given below for each case. 

B' = -1.3902695 + 1.0728781 x - 3.8748487 x 10-'t2 

Residuals, Liters/ Gram Mole 
Equation 5 Equation 6 

Temperature Range Av. Max. Av. Max. 
Below critical 0.013 0.038 0.012 0.041 
Above critical 0.003 0.005 0.002 0.003 

Guggenheim (3) points out that for numerically small 
second virial coefficients, it is possible to obtain an accuracy 
as good as 0.001 or 0.002 liter per gram mole. However, 
when the second virial coefficient is numerically large, as 
is generally the case below the critical temperature, the 
accuracy is rarely as good as 0.020 liter per gram mole, and 
usually no better than 0.050 liter per gram mole. 

Table VI  gives the smoothed values of B' calculated from 
Equations 5 and 6. 

~~ ~ 

Table VI. Smoothed Values of Second Virial Coefficients 6' 
Smoothed B',  Smoothed B', 
L./Gram Mole Temp., L./Gram Mole Temp., 

o C .  Eq. 5 Eq. 6 " C .  Eq.5 Eq. 6 
('I -1.390 -1.390 100 -0.649 -0.653 

10 
20 
30 
40 
50 
60 
70 
80 
90 

~ 

-1.286 
-1.190 
-1.101 
- 1.018 
-0.942 
-0.873 
-0.809 
-0.750 
-0.697 

-i.i87 
-1.191 
-1.102 
- 1.020 
-0.944 
-0.875 
-0.811 
-0.753 
-0.700 

110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

-0.606 
-0.567 
-0.532 
-0.501 
-0.473 
-0.449 
-0,427 
-0.409 
-0.392 
-0.387 

-0.610 
-0.571 
-0.536 
-0.504 
-0.477 
-0.452 
-0.430 
-0.410 
-0.393 
-0.377 
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REDUCED CORRELATION OF 
SECOND VlRlAL COEFFICIENTS 

The reduced second virial coefficients B: = B' /V ,  for 
2-methylbutane calculated from Equation 6 over the tem- 
perature range 50" to 200" C. a t  intervals of 25" C. were 
plotted us. the reduced temperature T, = TIT,. The data 
of Scott and others (7) on 2-methylbutane, of Beattie, 
Levine, and Douslin (2) on n-pentane, and of Beattie, 
Douslin, and Levine (1) on 2,2-dimethylpropane were also 
plotted on the same graph (Figure 2) .  A single curve of 
positive slope and negative curvature correlates all the 
data satifactorily. 

The critical volume, V,, and the critical temperature, 
T,, used for the three pentanes are those reported by 
Rossini and others (6). Table VI1 gives B', B:, and T, at the 
different temperatures. 

As a smoothing procedure, polynomials of the form 

-4'6 m 

- 2 6  
> 
0 8 - 2 2  

n 
% - I  8 

t: 
- I  4 

-I 0 

I I I I I 1 1 - 1  
- 0 6 l  I I I I I I I 

0 6  07 0 8  09 10 I 1  1 2  13 

REDUCED TEMPERATURE,T,+ 

Figure 2. Reduced second virial coefficient of pentanes 

~ ~~ 

Table VII. Reduced Second Virial Coefficients 

Temp., -B', 
" C .  L./G. Mole T,  - B: 

n-Pentane ( I , 2 )  200 0.405 1.007 1.302 
225 0.350 1.060 1.125 
250 0.311 1.114 1.OOO 
275 0.274 1.167 0.881 
300 0.244 1.220 0.784 

Isopentane (7) 6.32 1.313 0.606 4.263 
25.00 1.149 0.647 3.730 
37.85 1.126 0.653 3.656 

Isopentane, Eq. 6 50 0.944 0.701 3.065 
75 0.781 0.755 2.536 

100 0.653 0.809 2.120 
125 0.553 0.864 1.795 
150 0.477 0.918 1.549 
175 0.420 0.972 1.364 
200 0.377 1.026 1.224 

Neopentane ( I ,  2) 160.60 0.383 1.OOO 1.264 
175 0.354 1.033 1.168 
200 0.312 1.091 1.030 
225 0.273 1.148 0.901 
250 0.243 1.206 0.802 
275 0.216 1.264 0.713 
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I - I  

B: = C A,(T,)’where k = 1, 2,  . . . , n - 1 were fitted to 

the data by a least squares procedure. The fifth-order 
polynomial 

I - 0  

B: = 12.091380 - 159.95107 T, + 457.84870 !L? -562.84123 T: 
+322.28864 T: - 70.717253 T: (7) 

where 0.60 5 T, 4 1.27 
satisfied the characteristics of the curve over the reduced 
temperature range T, = 0.60 up to T, = 1.27. The average 
and maximum residuals, (B: ow. - B: cdcd.) are given below, 
and are probably well within the experimental accuracy of 
the data. 

Average residual 0.011 
Maximum residual 0.041 

Table VI11 gives the smoothed values of B: calculated 
from Equation 7. 

Table VIII. Smoothed Reduced Second Virial Coefficients 

T, - B: T, - B: T, - B: 
0.60 4.36 0.85 1.87 1.10 1.03 
0.65 3.68 0.90 1.62 1.15 0.91 
0.70 3.09 0.95 1.43 1.20 0.81 
0.75 2.59 1.00 1.28 1.25 0.73 
0.80 2.18 1.05 1.15 1.27 0.72 
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Kinetics of Reaction of Certain Diisocyanates 

L. C. CASE 
School of Chemical and Metallurgical Engineering, Purdue University, Lafayette, Ind. 

THE MOLECULAR structure of condensation poly- 
mers prepared from diisocyanates is substantially affected 
by the reactivity of the isocyanate groups and in particular 
by the difference in reactivity between the two isocyanate 
groups in an unsymmetrical diisocyanate. 

In unsymmetrical diisocyanates the isocyanate groups 
react more independently the larger the difference in 
reactivity between the two groups; thus the reaction of each 
group can be controlled by an appropriate choice of condi- 
tions. The statistical randomness of the product which 
arises when symmetrical diisocyanates are used can thus 
be avoided. 

As part of an experimental program on polyurethanes the 
reactivity of certain unsymmetrical diisocyanates with 
alcohol was determined. 

EXPERIMENTAL 

Rate Measurements. The method used to determine the 
reactivities of the isocyanate groups was very similar to 
the one described previously by Bailey and coworkers (I). 
Chlorobenzene was used as the solvent, however, and a 
10-fold excess of isoamyl alcohol was used to react with the 

diisocyanate. In this method the rate of disappearance of 
the NCO-band at  4.5 microns in the infrared spectrum of 
the reaction mixture is measured. The infrared spectra 
were run in an air-conditioned room, which was maintained 
at  about 21-3” C., but the reaction mixture itself in the 
absorption cell was not thermostated. Many spectral 
determinations were made, and the smooth curve drawn 
through the data was used in determining the pseudo 
first-order rate constants after the reaction had proceeded 
to the extent of about 10 to 20% and after approximately 
70 to 80% reaction had occurred. Because the diisocyanates 
frequently were used as distilled from the reaction mixture 
without further purification, and because of the other 
inaccuracies of the procedure used, the rate constants were 
determined to only one significant figure. 

The third column of Table I lists the half lives of the 
reaction estimated from data after 10 to 20% reaction had, 
taken place. In the fourth column the half lives of the 
reaction estimated from data after 70 to 80% of the reaction 
had been completed are given. The last column lists the 
ratio of the two half lives. This ratio may be taken as 
a measure of the difference in reactivity of the two isocya- 
nate groups of the unsymmetrical diisocyanate. Although 
the half lives are reported to only one significant figure, 
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